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We propose a generalization of the discrete Klein-Gordon models free of the Peierls-Nabarro barrier derived
in Spreight �Nonlinearity 12, 1373 �1999�� and Barashenkov et al. �Phys. Rev. E 72, 035602�R� �2005��, such
that they support not only kinks but a one-parameter set of exact static solutions. These solutions can be
obtained iteratively from a two-point nonlinear map whose role is played by the discretized first integral of the
static Klein-Gordon field, as suggested by Dmitriev et al. �J. Phys. A 38, 7617 �2005��. We then discuss some
discrete �4 models free of the Peierls-Nabarro barrier and identify for them the full space of available static
solutions, including those derived recently by Cooper et al. �Phys. Rev. E 72, 036605 �2005�� but not limited
to them. These findings are also relevant to standing wave solutions of discrete nonlinear Schrödinger models.
We also study stability of the obtained solutions. As an interesting aside, we derive the list of solutions to the
continuum �4 equation that fill the entire two-dimensional space of parameters obtained as the continuum limit
of the corresponding space of the discrete models.
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I. INTRODUCTION AND SETUP

Discrete nonlinear models play a very important role in
many physical applications �1,2�. An important class of
these models consists of a few completely integrable lattice
equations, such as the Toda lattice �3�, the Ablowitz-Ladik
lattice �4�, and the integrable sine-Gordon lattice �5�.
The fact that these lattices possess exact soliton solutions
demonstrates that, in principle, discreteness of the host me-
dia does not preclude the propagation of localized coherent
structures. Moreover, the mobility of solitonlike excitations
in discrete media is a key issue in many physical contexts;
for instance, the mobility of dislocations, a kind of topologi-
cal solitons, is of paramount importance in the physics of
plastic deformation of metals and other crystalline bodies
�6�.

A prototypical class of discrete models, relevant to a va-
riety of applications, consists of the Klein-Gordon dynamical
lattices �1�. One of the main representatives of this family of
models is the so-called �4 model �7�, which features a cubic
nonlinearity. This simple power law nonlinearity renders this
model a ripe testbed for studying the existence and stability
of nonlinear solutions, and comparing their properties in
continua and lattices.

In the �1+1�-dimensional continuum framework �and in
the absence of spatially dependent external potentials�, a so-
lution can be shifted arbitrarily along x by any x0 �x is the
spatial coordinate and x0=const�, due to the existing transla-
tional invariance. On the other hand, in the discrete system,
translational invariance is generically lost and equilibrium
static solutions exist only for a discrete rather than for a
continuum set of x0 �1�. Some of these equilibrium solutions
correspond to energy maxima and are unstable, while others,
corresponding to energy minima, are stable. The difference
between such maxima and minima of the energy is typically
referred to as the Peierls-Nabarro barrier �PNB�.

It is of particular interest to develop discretizations that do
not feature such barriers. In such cases, one might expect that
the ensuing models would be more faithful representations of
their continuum counterparts, regarding both symmetry prop-
erties and traveling solution features �even though there are
some notes of caution that should be made; see, e.g., the
discussion of Ref. �8��.

In that vein, recently, a number of nonintegrable discrete
Klein-Gordon equations free of the Peierls-Nabarro barrier
�PNB-free� have been systematically constructed. The first
set of such models which were, by construction, Hamiltonian
ones, was obtained by Speight and co-workers �9� using the
Bogomol’nyi argument �10�. A second successful attempt led
to the construction of momentum-conserving discretizations
�11�. It was then demonstrated, surprisingly, that the PNB-
free models of that kind conserving both energy and classical
momentum do not exist �12�. New PNB-free �4 lattices were
derived by Barashenkov et al. �13�. However, we note that
for the lattices derived in Refs. �9,13�, only the kink-type
solution has been considered, while it is well known that the
continuum Klein-Gordon equation can support a number of
other solutions �14�.

On the other hand, a general approach to the construction
of the PNB-free lattices was recently reported in Ref. �15�.
This approach is based on the use of the discretized first
integral �DFI� of the corresponding static field equation, and
the integration constant that enters DFI generates the one-
parameter solution space. The DFI is in fact a two-point
nonlinear algebraic equation from which the exact static so-
lutions of the three-point PNB-free discrete models can be
found.

In this work we systematically use the DFI approach and
derive the Hamiltonian and non-Hamiltonian PNB-free
Klein-Gordon lattices supporting the one-parameter space of
solutions, generalizing the lattices offered in Refs. �9,13�. We
then focus on the �4 field and discuss in detail the energy-
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conserving PNB-free model proposed very recently in Ref.
�16�, as well as the momentum-conserving model of Ref.
�11� �the two are identical in the static case�. For these mod-
els we describe the full solution space of the underlying
static problem that also includes the solutions derived earlier
in Ref. �16�.

Our setting is the following: We consider the Hamiltonian
of the Klein-Gordon field, H=EK+EP, with the kinetic and
potential energy functionals respectively defined as

EK =
1

2
�

−�

�

�t
2dx , �1�

EP =
1

2
�

−�

�

��x
2 + 2V����dx , �2�

where ��x , t� is the unknown field and V��� is a given
potential function. The corresponding equation of motion is

�tt = �xx − V���� � D„��x;t�… , �3�

where V����=dV /d�.
Equation �3� will be discretized on the lattice x=nh,

where n=0, ±1, ±2. . ., and h is the lattice spacing.
We would like to construct a nearest-neighbor discrete

analog to Eq. �3� of the form

�̈n = D�h,�n−1,�n,�n+1� , �4�

such that in the continuum limit �h→0� we have

D�h,�n−1,�n,�n+1� → D��� , �5�

and that the solution to the three-point static problem corre-
sponding to Eq. �4�,

D�h,�n−1,�n,�n+1� = 0, �6�

can be found from a reduced two-point problem

U�h,�n−1,�n� = 0. �7�

If this reduction is achieved, then the exact static solutions
can be constructed upon solving the algebraic Eq. �7� itera-
tively, starting from arbitrary admissible value of �n−1 or �n.
Arbitrariness in the choice of the initial condition implies
that the static solution can be placed anywhere with respect
to the lattice and, for that reason, such lattices are called
translationally invariant.

Discretization of Eq. �4� may result in a non-Hamiltonian
model due to the non-potential nature of the background
forces. In the latter setting, the absence of an energy func-
tional renders ambiguous the definition of the PN barrier,
hence we clarify this point in what follows. Suppose that we
have two equilibrium solutions, �n

�1� and �n
�2� �often, in

Hamiltonian models with PNB, the second one corresponds
to a linearly unstable energy maximum while the first one
corresponds to a linearly stable energy minimum�. The work
done by the interparticle and background forces to move the
nth particle from the position �n

�1� to the position �n
�2� is

Wn=�
�

n
�1�

�n
�2�

D�h ,�n−1 ,�n ,�n+1�d�n and the total work

performed to “transform” the solution �n
�1� to �n

�2� is

W=�−�
� Wn. The PN barrier is defined to be equal to W. For

Hamiltonian models this definition is equivalent to the
classical one because W is equal to the energy difference
between the second �possibly higher energy unstable� con-
figuration and the first �possibly lower energy stable� con-
figuration. For non-Hamiltonian models, Wn will depend on
the path connecting the initial and final configurations of
particles. To calculate W one therefore has to specify such a
path. While the height of the PN barrier in a non-
Hamiltonian lattice depends on the path, the PNB-free non-
Hamiltonian lattice can be unambiguously defined as the
translationally invariant lattice where the quasistatic transfor-
mation between the two configurations of interest can be
done continuously through a set of equilibrium configura-
tions. Along the path through the equilibrium configurations,
forces acting on the particles are zero and thus Wn=0 for any
n which, in turn, results in W=0. This notion of the PNB-free
lattice is also applicable to the Hamiltonian lattices and will
serve as our definition of the PNB-free models; notice, how-
ever, that we do not overlook the mathematical subtleties
involved in this definition, including the question of whether
W is zero along all realizable paths connecting �n

�1� and �n
�2�

in the non-Hamiltonian models, among equilibrium configu-
rations, as is the case for their Hamiltonian siblings. These
and related questions, including an appropriate modified
definition of the relevant quantities for models such as those
of the discrete nonlinear Schrödinger type, will be left for a
future publication.

Our scope in what follows is to generalize the approach
developed in Ref. �15� to show how to construct all possible
exact static solutions of the models of Refs. �15� and �16�
�see also Refs. �11,13��, including those derived in Ref. �16�.
This will also lead us to introduce a number of solutions
�both localized and extended ones� such as the ones that will
be termed “inverted” �see below�. We will also discuss the
stability of certain solutions among the obtained ones, for
each of the models of interest �since their stability properties
are different�.

We also note in passing that while our presentation will be
geared towards the �4 models, our results regarding the ex-
istence of solutions can equally well be applied to discrete
equations of the nonlinear Schrödinger �NLS� type �18�, such
as, e.g., the Ablowitz-Ladik model. In particular, let us
consider equations of the form

i�̇n =
1

h2 ��n−1 − 2�n + �n+1� + f��n,�̄n� �8�

�where the overbar denotes complex conjugate� with

f(�n exp�i�� , �̄n exp�−i��)= f��n , �̄n�exp�i�� and

limh→0f��n , �̄n�=−�	�	2�. Then, looking for standing wave
solutions of the form �n=exp�i�t��n, with �n real, one
would obtain the Klein-Gordon static problem for the stand-
ing wave spatial profile �n. Hence all the discussion given
below for the existence of such solutions can be appropri-
ately translated in the existence of standing waves of the
corresponding discrete NLS models. The reader should be
cautioned, however, that the stability properties in the latter
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context may differ �a relevant example will be discussed
later in the text�.

Our presentation will be structured as follows. In Sec. II,
we develop the DFI approach and derive PNB-free Klein-
Gordon models supporting one-parameter space of static so-
lutions. In Sec. III, we present some PNB-free �4 lattices and
describe some of their basic properties. In Sec. IV, we dis-
cuss the details of the construction of the general exact static
solutions of the models both in the localized �hyperbolic
function� and in the extended �general elliptic function�
form, and for both signs of the nonlinearity prefactor �.
�=1 corresponds to the so-called defocusing case, while
�=−1 corresponds to the focusing case in the standard ter-
minology of NLS equations. Examples of the solutions are
then given in Sec. V. In Sec. VI, we analyze the stability of
the obtained solutions. In Sec. VII, slow kink dynamics in
the PNB-free models is compared numerically with that in
the classical �4 model. In Sec. VIII we give a complete list
of bounded and unbounded exact solutions to the continuum
�4 field. In Sec. IX, we summarize our findings and present
our conclusions.

II. PNB-FREE KLEIN-GORDON LATTICES

A. Discretized first integral

Following the lines of the DFI approach of Ref. �15�, we
start from the first integral of the static Eq. �3�,

U�x� � �x
2 − 2V��� + C = 0, �9�

where C is the integration constant. The first integral can also
be taken in modified forms �15�, e.g., as

ṽ�x� � p�g��x
2� − g�2V − C�� = 0, �10�

or as

w̃�x� � p�g��x
2 + C� − g�2V�� = 0, �11�

where p and g are continuous functions and p�0�=0. Note
that ṽ�x� and w̃�x� are equivalent only if g���=�. We will
consider the case of p���=�, g���=�, i.e., the unchanged
form of the first integral, Eq. �9�, together with the case of
p���=�, g���=
�, for which we have the two possibilities,

v�x� � ± �x − 
2V��� − C = 0 �12�

and

w�x� � ± 
�x
2 + C − 
2V��� = 0, �13�

of which only the first one will be discussed below.
We then construct the DFIs corresponding to Eqs. �9� and

�12�, which are respectively given by

U�h,�n−1,�n� �
��n − �n−1�2

h2 − 2V��n−1,�n� + C = 0,

�14�

v�h,�n−1,�n� � ±
�n − �n−1

h
− 
2V��n−1,�n� − C = 0,

�15�

where we demand that V��n−1 ,�n�→V��� in the continuum
limit �h→0�.

B. Momentum-conserving PNB-free lattice

First we construct a PNB-free Klein-Gordon lattice using
the unchanged form of the first integral, Eq. �9�, and corre-
sponding DFI, Eq. �14�. Calculating dU /dx and multiplying
the result by �dx /d�� /2, we find

1

2

dU

d�
= D�x� . �16�

Discretizing the left-hand side of Eq. �16� we obtain the
lattice Klein-Gordon equation

�̈n =
U�h,�n,�n+1� − U�h,�n−1,�n�

�n+1 − �n−1
, �17�

whose static solutions can be found from the two-point
problem, Eq. �14�, and thus the lattice is PNB free.

The lattice of this type was first derived in Ref. �11� where
it was also demonstrated that it conserves the momentum

P = �
n

�̇n��n+1 − �n−1� . �18�

The integration constant C that appears in Eq. �14� can-
cels out in Eq. �17�. This means that all kinds of static solu-
tions derived from Eq. �14� for different C �kink solution
corresponds to C=0� will be the static solutions to one and
the same Klein-Gordon lattice, Eq. �17�, since it does not
depend on C.

The right-hand side of Eq. �17� becomes nonsingular
when the discretization of the potential V��� is a polynomial
function having symmetry V��n−1 ,�n�=V��n ,�n−1�. The
most general expression of this type was given in Ref. �12�.

C. Energy-conserving PNB-free lattice

To construct Hamiltonian PNB-free lattices we discretize
not the equation of motion, Eq. �3�, but the Hamiltonian,
Eqs. �1� and �2�. We now use the modified first integral in the
form of Eq. �12� with the upper sign and rewrite the potential
energy functional, Eq. �2�, as follows:

EP =
1

2
�

−�

�

��v�x��2 + 2�x

2V��� − C�dx , �19�

where we omitted the constant term. Discretizing the kinetic
energy, Eq. �1�, and the potential energy, Eq. �19�, we obtain
the discrete Hamiltonian
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H =
1

2�
n
�̇n

2 + �v�h,�n−1,�n��2

+ 2
�n − �n−1

h

2V��n−1,�n� − C� . �20�

If the background potential is discretized as suggested in
Ref. �9�,


2V��n−1,�n� − C =
G��n� − G��n−1�

�n − �n−1
,

where G���� = 
2V��� − C , �21�

then the last term of the Hamiltonian Eq. �20� reduces to
�2/h��G��n�−G��n−1�� and it disappears in the telescopic
summation. With the choice of Eq. �21�, the equations of
motion derived from Eq. �20� are

�̈n = − v̂�h,�n−1,�n�
�

��n
v̂�h,�n−1,�n�

− v̂�h,�n,�n+1�
�

��n
v̂�h,�n,�n+1� , �22�

where, according to Eqs. �15� and �21�,

v̂�h,�n−1,�n� =
�n − �n−1

h
−

G��n� − G��n−1�
�n − �n−1

. �23�

This lattice conserves the Hamiltonian �total energy�

Ĥ =
1

2�
n

��̇n
2 + �v̂�h,�n−1,�n��2� . �24�

Obviously, static solutions to the lattice Eq. �22� can be
found from the two-point DFI v̂�h ,�n−1 ,�n�=0 and it is also
clear that the Hamiltonian Eq. �24� is PNB free.

The energy-conserving lattice involves the integration
constant C �through the function G� and this is different from
what we had for the momentum-conserving model. The spe-
cial case of C=0 yields the original model by Speight �9�,
which supports a kink solution. Models with C�0 describe
solutions different from the kink solution.

D. Possible generalizations

Suppose that we use the same function V��n−1 ,�n�
in the DFIs Eqs. �14� and �15� to construct different
Di�h ,�n−1 ,�n ,�n+1� terms. Then equations U�h ,�n−1 ,�n�
=0 and v�h ,�n−1 ,�n�=0 are equivalent. A linear combina-
tion of those terms can be used to write the following
PNB-free Klein-Gordon model:

�̈n = �
i

biDi�h,�n−1,�n,�n+1� , �25�

where the constant coefficients satisfy the continuity con-
straint

�
i

bi → 1 when h → 0, �26�

assuming that bi can depend on h. Static solutions of Eq. �25�
can be found iteratively from Eqs. �14� or �15�.

The model of Eq. �25� can be generalized in a number of
ways. For example, one can append terms which disappear in
the continuum limit and ones that vanish upon substituting
U�h ,�n−1 ,�n�=0. Let us call such terms O terms. Further-
more, any term Di�h ,�n−1 ,�n ,�n+1� can be modified by mul-
tiplying by a continuous function e�h ,�n−1 ,�n ,�n+1�, which
never vanishes and whose continuum limit is unity. Such
multiplication will not change either the continuum limit, or
the static solutions of the model.

Particularly we will study the PNB-free model of the form

�̈n = e�h,�n�
U�h,�n,�n+1� − U�h,�n−1,�n�

�n+1 − �n−1

+ 	���n − �n−1�v��n,�n+1�

− ��n+1 − �n�v��n−1,�n�� , �27�

which is the lattice Eq. �17� modified by a multiplier e�h ,�n�
and augmented with the O term with arbitrary coefficient 	.
This O term was constructed to fit to the I3 invariant offered
in Ref. �13� for the discretization of the �4 field.

Finally we note that expressions similar to Eq. �16� can be
derived from derivatives dṽ�x� /dx and dw̃�x� /dx and they
can produce new PNB-free models.

III. PNB-FREE DISCRETE �4 MODELS

To give examples of Klein-Gordon lattices, we will
discretize the well-known �4 field with the potential

V��� =
�

4
�1 − �2�2, �28�

where the parameter �= ±1. The corresponding equation of
motion is

�tt = �xx + ��� − �3� . �29�

The above, so-called, �4 equation supports moving periodic
solutions that can be expressed in terms of the Jacobi elliptic
functions. The latter can be reduced to localized hyperbolic
function solutions �when the elliptic modulus m=1�.
Bounded solutions of this sort were discussed in the context
of structural phase transitions �14� and were used as the start-
ing point for derivation of exact solutions to a discrete �4

model �16�. In Sec. VIII we complete the list of the solutions
presented in Refs. �14,16� by providing also the set of
unbounded solutions of the present model.

The simplest discretization of Eq. �29� is of the form

�̈n =
1

h2 ��n−1 − 2�n + �n+1� + ���n − �n
3� , �30�

and it possesses a PN barrier. However, as mentioned above,
one can construct PNB-free discrete Klein-Gordon models
by discretizing the nonlinear term V���� typically over three
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neighboring points, V����→V���n−1 ,�n ,�n+1�, in contrast
to the classical discretization V����→V���n�. The three-
point discretization may be physically meaningful in some
settings �17�, but is also interesting from the more fundamen-
tal point of view of developing PNB-free discretizations and
obtaining analytically �or semi-analytically� explicit wave
forms of their solutions.

We discretize the potential of Eq. �28� as follows:

V��n−1,�n� =
�

4
�1 − �n−1�n�2. �31�

Then, the DFIs, Eqs. �14� and �15�, become, respectively,

U�h,�n−1,�n� �
��n − �n−1�2

h2 −
�

2
�1 − �n−1�n�2 + C = 0,

�32�

v�h,�n−1,�n� �
�n − �n−1

h
−
�

2
�1 − �n−1�n�2 − C = 0.

�33�

It has been demonstrated that at C=0 Eqs. �32� and �33�
support the kink solutions �9,13�. For C�0 they support
solutions different from kink.

Let us denote


 = �h2, C̃ = Ch2. �34�

Substituting Eqs. �32� and �33� into Eq. �27� with
e�h ,�n�=1 we arrive at the following PNB-free �4 lattice:

�̈n = �2�n + ��n −
�

2
�n

2��n−1 + �n+1�

+ 	��n+1 − �n�
�

2
�1 − �n−1�n�2 − C

− 	��n − �n−1�
�

2
�1 − �n�n+1�2 − C . �35�

Equation �35� gives a one-parameter �C� family of PNB-free
models. For the special case of C=0 and �=1 we get one of
the lattices derived in Ref. �13�, �̈n= �1+h2	 /
2��2�n+�n

+ �	 /
2−1/2��n
2��n−1+�n+1�−	
2�n−1�n�n+1, and this lat-

tice supports the kink solution. Lattices with C�0 support
solutions different from the kink.

For 	=0 we get from Eq. �35� the C-independent model

�̈n =
1

h2 ��n−1 − 2�n + �n+1� + ��n −
�

2
�n

2��n−1 + �n+1� .

�36�

This non-Hamiltonian PNB-free �4 model conserves
the momentum Eq. �18� and it will be referred to as the
momentum-conserving �MC� model.

Substituting Eq. �32� into Eq. �27� with
e�h ,�n�=1/ �1−
�n

2 /2� and 	=0 we obtain another
C-independent PNB-free model discovered in Ref. �16�,

�̈n =
1

h2 ��n−1 − 2�n + �n+1� +
���n − �n

3�
1 − 
�n

2/2
. �37�

This model will be called the energy-conserving �EC� model
because it possesses the Hamiltonian �16�

H =
1

2�
n
��̇n

2 +
��n − �n−1�2

h2 + V��n�� , �38�

where the potential V��n� is given by

V��n� = −
1

h2��n
2 +

2 − 




ln�1 −


�n
2

2
�� . �39�

In Fig. 1 we plot the potential V��n� for h=1 �i.e., 
=��
in the cases �=1 �solid line� and �=−1 �dashed line�. For
��0 the potential is smooth and it has one minimum at
�n=0 and two maxima at �n= ±1. For �0 the potential
has two minima at �n= ±1 and a maximum at �n=0; note
that in the limit �n→ ±
2/
, the potential V��n�→ +�.

It is not possible to plot an analog of Fig. 1 for the
MC model since the relevant background forces are of
many-body type �i.e., involve nearest neighbors� and are
nonpotential.

PNB-free models given by Eqs. �35�–�37� have exactly
the same static solutions derivable from DFI Eq. �32�.

IV. EXACT STATIC SOLUTIONS FOR DISCRETE MODELS

A. Solutions from nonlinear map

To find all static solutions to the PNB-free models of Eqs.
�35�–�37� we solve the DFI of Eq. �32�:

�n =
�2 − 
��n−1 ± 
D

2 − 
�n−1
2 ,

FIG. 1. The on-site potential of the EC model of Eq. �37�,
V��n�, defined by Eq. �39�, for h=1 and 
=�=1 �solid line� and

=�=−1 �dashed line�. For ��0 the potential is smooth and it has
one minimum at �n=0 and two maxima at �n= ±1. For �0 the
potential has two minima at �n= ±1 and a maximum at �n=0; as
�n→ ±
2/
 the potential V��n�→ +�.
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D = 2
�1 − �n−1
2 �2 + 2C̃�
�n−1

2 − 2� , �40�

where �n and �n−1 can be interchanged due to the symmetry
of the equation. Starting from any admissible “initial” value
�0, by iterating Eq. �40� and its counterpart written as �n−1
= f��n�, one can construct recurrently the static solution to
both the MC model of Eq. �36� and the EC model of Eq.
�37�, or to a linear combination thereof. Arbitrariness in the
choice of �0 implies the absence of PNB in these models,
which has been also demonstrated in Ref. �16�.

As can be seen from Eq. �40�, once the values of C̃ and 

are fixed, there are certain restrictions on the choice of the
values of �0. In particular, inadmissible initial values are
those for which the denominator becomes zero, i.e.,
�0� ±
2/
 for �0. An exceptional case is that of 
=2,

C̃=0 when an arbitrary sequence of ±1 is a solution of Eq.
�32�. Inadmissible values of �0 are also ones for which
D�0. The condition D=0 leads to a biquadratic algebraic
equation determining the borders of admissible region; the
roots of this equation are

��0
2�1,2 = 1 −

C̃

2
±
C̃

4
�C̃ − 4 +

8



� . �41�

Let us introduce the following notations for these roots:

F1 = − F3 = 
��0
2�1, F2 = − F4 = 
��0

2�2. �42�

The admissible regions for the values of �0 of the nonlin-
ear map Eq. �40� are shown in Fig. 2 for different values of

C̃ at 
=1. The corresponding result for 
=−1 is presented
in Fig. 3. These graphs present a road map for constructing
the various possible solutions of the above models.

The symmetry of Eq. �32� suggests that the topology of
the admissible regions is such that once started from an ad-
missible value of �0, one cannot leave the admissible region
iterating Eq. �40�, so that the static solution will surely be
constructed for the whole chain. This is so because Eq. �40�
serves for calculating both back and forth points of the map,
and if one is admissible, the other one is also admissible.

Equation �40� possesses two roots, which means that
for an admissible initial condition one can construct two
different solutions, e.g., a kink and an antikink. When iterat-
ing, to keep moving along the same solution, one must take
�n different from �n−2 �if the roots of Eq. �40� are different�.
Indeed, setting in the three-point static problem, Eq. �36�,
�n−1=�n+1, we find

�n−1 =
�2 − 
��n

2 − 
�n
2 . �43�

Comparing this with Eq. �40�, it is readily seen that the equi-
librium in the three-point equation in the case of
�n−1=�n+1 can be achieved only if D=0 and the two roots
coincide. As mentioned above, the latter requirement is
equivalent to the condition that �n is on the border of the
admissible region.

As it can be deduced from Eq. �41�, the topology of the
admissible regions presented in Figs. 2 and 3 does not sig-
nificantly change among different but positive and among

different but negative values of 
, respectively; of course,
one has to exclude the particular case of 
=2 and also the
continuum limit �see Sec. VIII�. Here we will not discuss in

FIG. 2. Admissible region for the “initial” value �0 in the non-

linear map Eq. �40� for different values of C̃ at 
=1. There are
three inadmissible regions marked with “no” and two inadmissible
lines �0� ±
2/
 �horizontal dashed lines�. On these lines the on-
site potential V��n� diverges �see Fig. 1�. Fi �i=1, . . . ,4� designate
different branches of the borders of the admissible regions �see Eqs.

�41� and �42��. Roots F1 and F2 merge at C̃=0 and at C̃=4−8/
.

Roots F2 and F4 merge at C̃=
 /2. Vertical dashed lines separate
regions with different Jacobi elliptic function solutions. The vertical

dotted line, situated �for the chosen parameters� at C̃*�−1.00, di-
vides the region of the sndn/cn solution into two portions corre-
sponding to two roots of the first equation in Eq. �52�.

FIG. 3. Same as in Fig. 2 but for 
=−1. Roots F1 and F2 merge

at C̃=0, and roots F2 and F4 merge at C̃=
 /2. The dn solution, Eq.

�49�, is defined for 
 /2� C̃�0. The cn solution, Eq. �48�, is de-

fined for C̃�
 /2, and this region is divided into two parts, �1 and
�2, each corresponding to a particular root of the first equation in
Eq. �48�. The border between these two regions is shown by the

dotted line situated �for the chosen parameters� at C̃*�−2.96.

DMITRIEV et al. PHYSICAL REVIEW E 74, 046609 �2006�

046609-6



detail the case of extremely high discreteness �
2�, even
though the analysis of this case does not present any
additional difficulties.

To summarize, inside the admissible region, �C̃ ,�0�
�shown in Figs. 2 and 3�, the nonlinear map of Eq. �40�
generates static solutions to the MC model of Eq. �36� and to
the EC model of Eq. �37�.

B. Jacobi elliptic function solutions

Static solutions to the discrete PNB-free models of Eqs.
�36� and �37� have been reported �16� in the form of the
Jacobi elliptic functions, sn, cn, and dn �20�. Below, we will
derive such solutions.

The general form of the solutions is

�n = ± Asnq�Z,m�cnr�Z,m�dns�Z,m� ,

Z = �h�n + x0� , �44�

where 0�m�1 is the modulus of the Jacobi elliptic func-
tions, A and � are the parameters of the solution, and x0 is
the arbitrary initial position. Finally the integers q ,r ,s
specify a particular form of the solution.

In the limit of m=1, Eq. �44� reduces to the hyperbolic
function form

�n = ± A tanhq�Z�cosh−r−s�Z� , �45�

and, in the limit of m=0, to the trigonometric function form

�n = ± A sinq�Z�cosr�Z� . �46�

Substituting the ansatz Eq. �44� into Eq. �32� and equal-
izing the coefficients in front of similar terms we find that it
can be satisfied for a limited number of combinations of
integer powers q ,r ,s. Solving the equations for the coeffi-
cients we relate the parameters of the solution Eq. �44�, �
and A, to 
 and m and also find the relation between C, that
enters Eq. �32�, and m.

For some of the sets �q ,r ,s�, e.g., for �q ,r ,s�= �1,−1,0�
and for �q ,r ,s�= �1,−1,−1�, we obtain imaginary amplitude
A in the whole range of parameters.

Essentially different, real amplitude solutions described
by Eq. �44� have the following form and are characterized by
the following parameters:

The sn solution, �q ,r ,s�= �1,0 ,0�,

cn��h�dn��h� = 1 −



2
, A =
2m



sn��h� ,

C̃ =



2
�1 −

A4

m
�, 0 � C̃ �




2
; �47�

the cn solution, �q ,r ,s�= �0,1 ,0�,

cn��h�
dn2��h�

= 1 −



2
, A =
− 2m




sn��h�
dn��h�

,

C̃ = 

�1 − A2�2

2 − 
A2 , − � � C̃ �



2
; �48�

the dn solution, �q ,r ,s�= �0,0 ,1�,

dn��h�
cn2��h�

= 1 −



2
, A =
− 2




sn��h�
cn��h�

,

C̃ = 

�1 − A2�2

2 − 
A2 ,



2
� C̃ � 0; �49�

the 1/sn solution, �q ,r ,s�= �−1,0 ,0�,

cn��h�dn��h� = 1 −



2
, A =
 2



sn��h� ,

C̃ =



2
�1 − mA4�, 0 � C̃ �




2
; �50�

the 1/cn solution, �q ,r ,s�= �0,−1,0�,

cn��h�
dn2��h�

= 1 −



2
, A =
2�1 − m�




sn��h�
dn��h�

,

C̃ =



2
�1 +

mA4

1 − m
�,




2
� C̃ � �; �51�

the sndn/cn solution, �q ,r ,s�= �1,−1,1�,

mcn4��h� + 1 − m

cn2��h�
= 1 −




2
, A =
 2




sn��h�dn��h�
cn��h�

,

C̃ =



2
�1 − A4�, 4 −

8



� C̃ � 0. �52�

It is worth making the following remarks:
The solutions shown in Eqs. �48� and �49� have real am-

plitudes for 
�0 while the others for 
0.
The solutions should be interpreted in the following form.

For a given 
, one can find � by solving the first equation in
Eqs. �47�–�52�, and then A from the second one. Substituting
these values in Eq. �44� results in the static solutions of the
original discrete model.

The expressions for C̃ in Eqs. �47�–�52� link the elliptic
Jacobi function solutions and the solution in the form of the
nonlinear map, Eq. �40�. As for the other free parameter of
the solutions Eqs. �47�–�52�, the arbitrary shift x0, its coun-
terpart in the nonlinear map, Eq. �40�, is effectively the
initial value �0.

The solutions of Eqs. �47�–�52� can be expressed in a
number of other forms using the well-known identities for
the Jacobi elliptic functions �20�. For example, shifting the
argument by a quarter period, one can transform the sn so-
lution to the form of cn/dn, or, applying the ascending
Landen transformation, to the form of sncn/dn. Mathemati-
cally, these three expressions look as different members of
Eq. �44�, but physically they are indistinguishable.

V. ANALYSIS OF STATIC SOLUTIONS

In what follows, we analyze the static solutions derivable
from Eq. �40� discussing their relation to Eqs. �47�–�52�.
Since the topology of the admissible regions is different

EXACT STATIC SOLUTIONS FOR DISCRETE �4 MODELS ... PHYSICAL REVIEW E 74, 046609 �2006�

046609-7



for positive and negative 
, these two cases are studied
separately.

A. �0 case

In the sn solution, Eq. �47�, when the elliptic modulus
increases from its smallest value m=0 to its largest value
m=1, the amplitude A increases from 0 to 1, since A=F2 �see

Eqs. �41� and �42��. As a result, the parameter C̃ monotoni-
cally decreases from 
 /2 to 0. Thus the sn solution is de-

fined in the portion of the �C̃ ,�0�-plane, 0� C̃�
 /2 and
	�0	�F2 �see Fig. 2�.

The 1/sn solution, Eq. �50�, is defined for 0�m�1, and it
is complementary to the sn solution since it is also valid for

0� C̃�
 /2, but for 	�0	F1 �see Fig. 2�.
The 1/cn solution, Eq. �51�, is defined for 0�m�1 and it

occupies the region 
 /2� C̃��, 	�0	F1 �see Fig. 2�.
The sndn/cn solution, Eq. �52�, is defined for unlimited �0

in the range 4–8/
� C̃�0 �see Fig. 2�. This solution is
only valid for m*�m�1, where, for fixed �, m*�h� is an
increasing function of h and m*�0�=1/2. For m�m* the first
expression in Eq. �52� does not have solutions for �. For
m*�m�1, the equation has two roots, �1��2. For the lim-
iting value m*, one can find the corresponding amplitude A*

from the second expression of Eq. �52�, and then C̃*, from
the last expression. For the case of 
=1 presented in Fig. 2,

we find m*�0.933 and C̃*�−1.00.
It should be noticed that we have not found a solution of

the form of Eq. �44� valid in the range of C̃�4–8/
 �por-
tion marked with the question mark in Fig. 2�. It is likely that
static solutions in this range cannot be expressed in terms of
the Jacobi elliptic functions because they do not survive in
the continuum limit �see Sec. VIII�. However, the solution
can easily be constructed from the nonlinear map in Eq. �40�.

Let us now discuss further several particular examples of
the above solutions. First of all, in the limit m→1 �see Eq.
�45��, the sn solution, Eq. �47�, reduces to the kink solution
�16�,

�n = ± tanh��h�n + x0�� , �53�

while the 1/sn solution, Eq. �50�, reduces to the solution
called hereafter the “inverted” kink,

�n =
±1

tanh��h�n + x0��
. �54�

In Eqs. �53� and �54�, x0 is the �arbitrary� position of the
solution and tanh��h�=

 /2.

This limiting case corresponds to C̃=0, for which a het-
eroclinic connection is possible between the fixed points
�n=−1 and �n=1 �see Fig. 2�, giving rise to the kink or the
inverted kink. In this case, Eq. �40� assumes the following
simple form:

�n =
�n−1 ± 

/2

1 ± 

/2�n−1

, �55�

where one can choose either the upper or the lower signs.
The kink, Eq. �53�, and the inverted kink, Eq. �54�, can be

derived from Eq. �55� taking initial values from 	�0	�1 and
	�0	1, respectively.

In Fig. 4 we show �a� the kink and �b� the inverted kink
solutions taking �0=
2−1 and �0=
2+1, respectively, for

=1.

In Fig. 5, and for 
=1, we present two examples of so-

lutions for positive and negative C̃ close to 0. In particular,

for C̃= +2�10−5, taking initial value �0=0, we obtain from
the map of Eq. �40� the solution presented in panel �a�. In
fact, it is the sn solution close to the hyperbolic function
limit having the form of a periodic chain of kinks and

antikinks. On the other hand, for C̃=−6.75�10−4 and �0
=0, we obtain from the map of Eq. �40� the solution shown
in panel �b�. This is the sndn/cn solution close to the hyper-
bolic function limit and has a form of a chain of kinks and
inverted antikinks.

In Fig. 6, and for 
=1, we present the 1/sn solution,
Eq. �50�, �a� close to the hyperbolic and �b� at the trigono-
metric limits. The solution shown in panel �a� is a chain
of inverted kinks and inverted antikinks. These solutions
are obtained from the nonlinear map Eq. �40� setting

C̃=1.23�10−9, �0=1+
2 for �a�, and C̃=0.5, �0=2.45 for
�b�.

In summary, we have shown that the well-established �hy-
perbolic and elliptic function� solutions of the model corre-

spond to a region of the two-parameter ��0 , C̃� admissible
space. A natural question is what is the typical profile out-

come stemming from the use of other pairs of �0 and C̃ in
Eq. �40�. Generically, upon testing the different regions of
the admissible regime we have observed that arbitrary
choices may lead to seemingly erratic solutions with very

FIG. 4. Solutions at C̃=0: �a� kink and �b� inverted kink at

=1. The solutions can be found from the nonlinear map Eq. �55�
with the initial conditions �0=
2−1 and �0=
2+1 for �a� and �b�,
respectively. The kink and the inverted kink are also given by Eqs.
�53� and �54�, respectively, for x0=0.5. Horizontal dashed lines,
�n= ±
2/
, show positions of singular points of the potential
V��n� �see Fig. 1�.
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large amplitudes. A different sign choice in the right hand
side of Eq. �40� may, however, lead to a periodically locked
tail structure. A simple example of such a solution is given
below.

B. ��0 case

For negative 
, we have the cn solution, Eq. �48�, and the
dn solution, Eq. �49�. Let us first start from the latter: When

m increases from 0 to 1 in Eq. �49�, the parameter C de-
creases monotonically from 0 to 
 /2, i.e., this solution is
defined in the “dn” portion of Fig. 3.

On the other hand, the cn solution of Eq. �48� is only valid
for m*�m�1, where m*�h� is an increasing function of h
and m*�0�=1/2. For m�m* the second expression of Eq.
�48� does not have solutions for �. For m*�m�1, the equa-
tion has two roots, �1��2. For the limiting value m*, one
can find the corresponding amplitude A* from the second

expression of Eq. �48� and then C̃* from the last expression.

When m increases from m* to 1 in Eq. �48�, the parameter C̃
of the nonlinear map Eq. �40� corresponding to the root �1

��2� increases from C̃* �decreases from C̃*� to 
 /2 �to −��.
Thus the cn solution occupies the rest of the admissible
region for the case of 
�0 �see Fig. 3�. In the case
of 
=−1 presented in Fig. 3, we find m*�0.873 and

C̃*�−2.96.

Both cn and dn solutions, in the limit m→1 �C̃→
 /2�,
reduce to a homoclinic to 0 pulse solution �see also Figs. 1
and 3 where this possibility is illustrated�. This solution has
the form

�n = ± A sech��h�n + x0�� , �56�

where

cosh��h� = 1 −



2
, and A =
2 −




2
. �57�

This is illustrated by Fig. 7 where, taking 
=−1,
we show the solution obtained from the map Eq. �40� at �a�
C̃=
 /2−10−8 �dn solution� and �b� C̃=
 /2+10−8 �cn solu-
tion�, for initial value of �0=10−4. The figure clearly illus-

FIG. 5. Solutions for C̃ close to 0, at 
=1, obtained from

the map of Eq. �40�: �a� �0=0, C̃=2�10−5, and �b� �0=0,

C̃=−6.75�10−4. The solution in �a� is the sn solution, Eq. �47�, and
the solution in �b� is the sndn/cn solution, Eq. �52�. Horizontal
dashed lines, �n= ±
2/
, show positions of singular points of the
potential V��n� �see Fig. 1�.

FIG. 6. The 1/sn solution, Eq. �50�, �a� close to the hyperbolic
and �b� at the trigonometric limits. We set 
=1. The solution in �a�
consists of a chain of inverted kinks and inverted antikinks. To
obtain these solutions from the nonlinear map Eq. �40� we set

C̃=1.23�10−9, �0=1+
2 for �a�, and C̃=0.5, �0=2.45 for �b�.

FIG. 7. Solutions for 
=−1 at �a� C̃=
 /2−10−8 and �b�
C̃=
 /2+10−8, for initial value of �0=10−4. Since C̃ is close to

 /2=−1/2, corresponding to m=1, the dn solution in �a� and the cn
solution in �b� look like chains of separated pulses given by Eq.
�56�.
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trates the two limits �to the left and to the right of C̃=
 /2�
and their correspondence to pairs of pulse-pulse solutions
and ones of pulse-antipulse solutions, as one enters the two
different regimes “dn” and “cn” of Fig. 3.

C. Solutions with �n−1=�n+1

Solutions of this special form can be expressed as
�n=A cos��n�+B with constant A and B. For the sake of
simplicity, we set B=0 and substitute the ansatz into Eq. �36�
or Eq. �37� to find the zigzag solution

�n = A cos��n�, A =
 4



− 1. �58�

To obtain this solution from the map Eq. �40�, one has to set

C̃= �� /2��1+A2�2−4A2 /h2, which is the general condition
for getting �n=−�n−1. Substituting here A from Eq. �58�, we

get C̃=4�
−2� / �
h2�. For the case of 
=1 presented in

Fig. 2, we have C̃=−4.
The zigzag solution is an exceptional one, as �n=�n−2 for

any n. However, as shown above, this is only possible when
Eq. �40� has multiple roots, which means that the two-point
static problem, Eq. �32�, is factorized. This solution does not
have a counterpart in the continuum limit.

VI. LINEAR STABILITY

The static solutions of the discrete models Eqs. �36� and
�37� are exactly the same, but the dynamical properties of the
two models are different. As the corresponding stability
analysis takes into account the dynamical form of each
model, it will be carried out separately for each of the two.

Let us first consider the MC model of Eq. �36�. Introduc-
ing the ansatz �n�t�=�n

0+�n�t� �where �n
0 is an equilibrium

solution and �n�t� is a small perturbation�, we linearize Eq.
�36� with respect to �n and obtain the following equation:

�̈n =
1

h2 ��n−1 − 2�n + �n+1� + ��n −
�

2
��n

0�2��n−1 + �n+1�

− ��n
0��n−1

0 + �n+1
0 ��n. �59�

For the small-amplitude phonons, �n=exp�i�n+ i�t�, with
frequency � and wave number �, around the uniform steady
states �0= ±1 ��0�, Eq. �59� is reduced to the following
dispersion relation:

�2 = 2� + � 4

h2 − 2��sin2��

2
� , �60�

while the spectrum of the vacuum solution for ��0, �n
0=0,

is

�2 =
4

h2 sin2��

2
� − � . �61�

For an arbitrary stationary solution �n
0, stability is inferred

in the MC model if the eigenvalue problem obtained from
Eq. �59� by replacing �̈n with −�2�n has only non-negative
solutions �2. Recalling that the MC model is a non-

Hamiltonian one, the resulting eigenvalue problem is a
non-self-adjoint one involving a nonsymmetric matrix.

Similarly, we obtain analogous expressions for the EC
model of Eq. �37�. The linearized equation reads

�̈n =
1

h2 ��n−1 − 2�n + �n+1� + 2�
2 + �
 − 6���n

0�2 + 
��n
0�4

�2 − 
��n
0�2�2 �n,

�62�

and the corresponding dispersion relation for the linear
phonon modes around �n

0= ±1 has the form

�2 =
4�

2 − 

+

4

h2 sin2��

2
� , �63�

while that of vacuum solution �n=0 �for ��0� is

�2 =
4

h2 sin2��

2
� − � . �64�

The stationary solution �n
0 is stable in the EC model of

Eq. �37� if the self-adjoint eigenvalue problem obtained from
Eq. �62� by replacing �̈n with −�2�n has only non-negative
solutions �2.

We note that all stable and unstable static solutions of
the MC and the EC models, except for the zigzag solution
Eq. �58�, possess a zero-frequency mode. This is a conse-
quence of the effective translational invariance of the dis-
crete PNB-free models; this is related also to the freedom of
selecting the free parameter x0 in the corresponding solution
expressions.

Our aim here is not to study the whole bunch of solutions
in the whole range of parameters, but rather to demonstrate
the existence of stable solutions and also provide some ex-
amples where solutions, being stable in one model, may be
unstable in another. The results of stability analysis for some
characteristic solutions are summarized in Table I.

First, we consider the kink and inverted kink solutions
given in Eqs. �53� and �54�, respectively: In a numerical
experiment, these solutions were placed in the middle of a
chain of N=200 particles with fixed boundary conditions. We
have found that for the chosen set of parameters, the kink is

TABLE I. Results of stability analysis

Solution
MC model,
Eq. �36�

EC model,
Eq. �37�

kink, Eq. �53� stable stable

Inverted kink,
Eq. �54�

unstable stable

Pulse, Eq. �56� unstable unstable

sn cn, dn
close to hyper-
bolic limit

unstable unstable

sndn/cn, 1/sn
close to hyper-
bolic limit

unstable stable
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stable in both MC and EC models, while the inverted kink is
stable in the EC and unstable in the MC model.

In Fig. 8 we show the spectra of the kink and the inverted
kink for their different positions with respect to the lattice x0.
In the figure, the horizontal lines show the borders of the
phonon band of the vacuum �n= ±1 and the dots show the
frequencies of the kink’s internal modes lying outside of the
band. In all cases, the spectra are shown as functions of x0,
even though, admittedly, the kink in the MC model presented
in �a� demonstrates very weak sensitivity of its spectrum to
variations of x0.

Let us now consider the periodic solutions depicted in
Fig. 5�b� �sndn/cn� and in Fig. 6�a� �1/sn�. For these classes
of solutions we used periodic boundary conditions and the
length of the lattice was commensurate with the period of the
solutions containing a number of periods. Close to the hy-
perbolic function limit, these solutions are stable in the EC
model but unstable in the MC model, following the stability
of the building blocks �inverted kinks� associated with these
structures. On the other hand, the 1/sn solution becomes un-
stable in both models at the trigonometric limit depicted in
Fig. 6�b�. Nonetheless, we find it remarkable that some of
these “apparently nonsmooth” solutions �or maybe more cor-
rectly, solutions apparently containing a nonsmooth con-
tinuum limit� may be potentially stable in the discrete set-
ting. It would be worthwhile to analyze the stability of such
structures in more detail and to quantify its changes as a
function of their elliptic modulus m.

Next, we consider the zigzag solution, Eq. �58�, which
exists for 0�
�4. It can be shown that this solution can be
stable in the EC model: Indeed, substituting Eq. �58� into the
relevant eigenvalue problem, we obtain the dispersion rela-
tion for the linear phonon modes, �2= �4/h2�sin2�� /2�
+8/ �h2�2−
��. The solution is stable when �2 are non-
negative, i.e., when 
�2. Combining this with the existence
condition we find that the zigzag solution exists and it is
stable in the EC model for 0�
�2. Note that this excep-
tional solution does not possess the zero frequency mode, as
it can be seen from the above dispersion relation. The ampli-
tude of the solution, 
4/
−1, is always greater than 1. The
zigzag solution is always unstable in the MC model, a result
that can similarly be demonstrated.

The sn, cn, and dn solutions close to the hyperbolic limit
were found to be generically unstable in both the MC and EC
models. The instability of the pulse solution of Eq. �56� can
be analytically justified in the present setting. It can be easily

inferred from the invariance of the solution with respect to x0
that the eigenvector leading to the zero eigenvalue of Fig. 8
is proportional to �� /�x0 �where � is the pulse solution pro-
file�. This is an antisymmetric eigenvector, given the pulse’s
symmetric �around its center� nature. But then, from Sturm-
Liouville theory for discrete operators �19�, there should be
an eigenvalue such that �2�0 with a symmetric �i.e., even�
eigenvector, resulting in the instability of the relevant pulse
solution. Our numerical simulations fully support this con-
clusion. The pulse solution was constructed by iterating Eq.
�40� for 
�0, C̃=
 /2, and 0��0�
2−
 /2, or directly
from Eq. �56�. We found that for �=−1 the pulse solution is
unstable in both models and over a wide range of the dis-
creteness parameter h, including the case of rather small
h�0.1. We have also confirmed that the instability mode is
similar to the pulse profile �i.e., of even parity�.

Both the cn and dn solutions �see, e.g., Fig. 7� are also
found to be unstable for the different parameter values
that we have used in both the MC and EC models. This is
rather natural to expect given that their “building blocks,”
namely the pulselike solutions are each unstable �hence their
concatenation will only add to the unstable eigendirections�.

Finally, as far as the sn solutions are concerned, two basic
instability modes were revealed. One resembles the instabil-
ity of the pulse solution, when the whole structure, being
waved around the top of the background potential, tends to
slide down to one of the potential wells. The other instability
modes can be understood if one regards the sn solution as a
set of alternating kinks and antikinks �see Fig. 5�a�� interact-
ing with each other by means of overlapping tails. Such a
system is unstable because the kinks tend to annihilate with
the antikinks.

It is interesting to note that these stability results suggest a
disparity with the earlier numerical findings of Ref. �16�
where the pulselike solution was generically reported to be
stable and analogous statements were made for the cn- and
dn-type solutions.

At this point, it is worth discussing a connection with
NLS-type models mentioned in the Introduction. In the case
of such models, the aforementioned unstable eigendirection
�with an eigenvector similar in profile to the pulse itself� is
“prohibited” by the additional conservation law of the l2

norm, resulting in a separate neutral eigendirection with zero
eigenfrequency. As a consequence, it is an interesting twist
that the instability reported for such pulselike solution in
scalar �4 models would be absent in their discrete NLS
counterparts.

FIG. 8. Spectrum of �a� kink in MC model,
�b� kink in EC model, and �c� inverted kink in EC

model at C̃=0, 
=1 �h=1�. The inverted kink in
MC model is unstable for the chosen parameters.
Horizontal lines show the borders of the phonon
bands.
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VII. SLOW KINK DYNAMICS

In Ref. �15�, we have compared the spectra and the long-
term dynamics of the kinks in the two PNB-free models,
Eqs. �36� and �37�, with that of the classical discrete model,
Eq. �30� �see Fig. 1 of that paper�. The case of very small
kink velocities was not studied there. Here we would like
to focus on this case to demonstrate the qualitatively differ-
ent behavior for slowly moving kinks in the PNB-free and
classical models.

To boost the kink in the PNB-free models Eqs. �36� and
�37� we used the following dynamical solution correspond-
ing to the multiple eigenvalue: �2=0, �n�t�=�n

0+ct�n, where
�n

0 is a static kink solution, �n is the normalized translational
eigenmode, and c is the amplitude playing the role of kink
velocity. This construction yields a more accurate approxi-
mate solution for very small c when linearized equations �59�
and �62� are accurate. Increasing c leads to a decrease in the
accuracy of the dynamical solution used for boosting. On the
other hand, we note in passing that there are techniques de-
veloped recently for Klein-Gordon �8,21� and even nonlinear
Schrödinger lattices �22� that also allow the construction of
finite speed, numerically exact traveling solutions in these
classes of models.

In Fig. 9 we present the lowest frequency normalized
eigenmodes for the intersite kinks in the three models, for the
case of h=1, �=1 �
=1�. Both PNB-free models, Eqs. �36�
and �37�, have the same translational eigenmodes with �
=0, shown by dots connected with solid lines. One can show
by straightforward algebra that the PNB-free model modified
by a nonvanishing multiplier e�h ,�n−1 ,�n ,�n+1� as de-
scribed in Sec. II D has the same translational eigenmode as
the original model. Assuming that the two models are,
respectively,

�̈n = f��n−1,�n,�n+1� , �65�

�̈n = e��n−1,�n,�n+1� � f��n−1,�n,�n+1� , �66�

where the function e�x ,y ,z��0, then the steady state solu-
tions �n

0 will satisfy f��n−1
0 ,�n

0 ,�n+1
0 �=0, for all n, while the

corresponding linearization equations �using �n=�n
0+�n� are

respectively of the form

�̈n = � �f

��n−1
�

0
�n−1 + � �f

��n
�

0
�n + � �f

��n+1
�

0
�n+1, �67�

�̈n = e�� �f

��n−1
�

0
�n−1 + � �f

��n
�

0
�n + � �f

��n+1
�

0
�n+1� .

�68�

Hence when solving the corresponding eigenvalue problem
�again substituting �̈n by −�2�n�, for �=0, the eigenvalue
problems become identical, both satisfying

0 = � �f

��n−1
�

0
�n−1 + � �f

��n
�

0
�n + � �f

��n+1
�

0
�n+1, �69�

hence the coincidence of the corresponding eigenvectors. We
do note, in passing, also that while this justifies the coinci-
dence of the zero eigenfrequency modes of the PNB-free
models in Fig. 9, it is also in tune with the results of Fig. 8
for nonzero eigenfrequencies �. The latter are not identical
between the different models, as indicated by the left and
middle panels of that figure. This is due to the differences
between the corresponding eigenvalue problems of Eqs. �67�
and �68�, when ��0.

For the classical model, Eq. �30�, the lowest-frequency
mode has ��0.252, and it is shown in Fig. 9 by open circles
and dashed lines. Actually, this mode is not a translational
mode �since, strictly speaking, there is no translational in-
variance� but we use it to boost the kink. One can say that
this will become the translational mode for this model in the
continuum limit.

We define the kink center of mass as

S =

�
n

n
1 − �n
2

�
n


1 − �n
2

. �70�

The evolution of the kink coordinates is shown in Fig. 10.
Kinks were boosted with two different amplitudes of the nor-
malized lowest-frequency eigenmodes, c=0.02 and c=0.08.
Results for the PNB-free models practically coincide, as de-
picted by the dashed and solid lines for the MC and EC
models, respectively. It is readily seen that kinks in the PNB-
free lattices propagate with roughly constant velocities.

The oscillatory trajectories in Fig. 10 correspond to the
kink in the classical discrete �4 model. The faster kink,
boosted with c=0.08, propagates along the lattice but its ve-
locity gradually decreases. The kinetic energy of the transla-
tional motion is partly lost due to the coupling of localized
modes to phonon radiation which slows the kink down. An
even more dramatic difference is observed for the slower
kinks, boosted with c=0.02. Here, the classical kink cannot
overcome the PN barrier and cannot propagate, oscillating

FIG. 9. Lowest frequency normalized eigenmodes for intersite
kinks. Both PNB-free models, Eqs. �36� and �37�, have the same
translational eigenmode with �=0, shown by dots connected with
solid lines �see also the relevant discussion in the text�. For the
classical model, Eq. �30�, the lowest-frequency mode has �
�0.252 �shown by open circles and dashed lines�. Results for
h=1, �=1 �
=1�.
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near the stable intersite configuration. On the other hand, the
kinks in the PNB-free models are not trapped by the lattice
and propagate due to the absence of the PN barrier. Alterna-
tively, one can say that such wave forms can be accelerated
by arbitrarily small external fields.

VIII. SOLUTIONS FOR CONTINUUM �4 FIELD

In the continuum limit, h→0, the borders of the
admissible region, Eq. �41�, become

��0
2�1,2 = 1 ±
2C

�
. �71�

In Fig. 11 we plot the admissible regions for �a� �=1 and
�b� �=−1. The topology of the admissible regions for the �4

field is simpler than the one pertaining to the discrete mod-
els. In the continuum limit there exists a sole inadmissible
region for both cases �= ±1, while three inadmissible re-
gions exist for the discrete models in the case 
0. One
more simplification is that the domains of the sndn/cn and
cn solutions do not split into two parts since the smaller root
�1 disappears in the continuum limit. Particularly we note
that the region marked with the question mark in Fig. 2,

C̃�4−8/
, disappears in the continuum limit. That might
be the reason why we failed to find a Jacobi elliptic function
expression for the discrete static solutions in this case.

Static solutions Eqs. �47�–�52� obtained for the discrete
models have their continuum counterparts as the traveling
solutions to the �4 field, Eq. �29�. The general form of the
solutions is

��x,t� = ± Asnq�z,m�cnr�z,m�dns�z,m� ,

z = ��x + x0 − ct� , �72�

where 0�m�1 is the modulus of the Jacobi elliptic func-
tions, A and � are the parameters of the solution, x0 is the
arbitrary initial position, and 0�c�1 is the velocity of the
solution. The integers q, r, s once again specify the particular
form of the solution.

Continuum analogues of Eqs. �47�–�52� have the follow-
ing form and are characterized by the following parameters:

the sn solution, �q ,r ,s�= �1,0 ,0�,

� =
 �

�1 + m��1 − c2�
, A =
 2m

1 + m
,

C =
�

2
�1 −

A4

m
�, 0 � C �

�

2
; �73�

the cn solution, �q ,r ,s�= �0,1 ,0�,

� =
 − �

�2m − 1��1 − c2�
, A =
 2m

2m − 1
,

C =
�

2
�1 − A2�2, − � � C �

�

2
; �74�

the dn solution, �q ,r ,s�= �0,0 ,1�,

� =
 − �

�2 − m��1 − c2�
, A =
 2

2 − m
,

C =
�

2
�1 − A2�2,

�

2
� C � 0; �75�

the 1/sn solution, �q ,r ,s�= �−1,0 ,0�,

� =
 �

�1 + m��1 − c2�
, A =
 2

1 + m
,

FIG. 10. The kink coordinate S as a function of time for kinks
propagating in the PNB-free MC �dashed line� and EC �solid line�
models, as well as in the classical discrete �4 model �oscillatory
line�. The kinks were boosted with two different amplitudes of the
normalized lowest-frequency eigenmodes, c=0.02 and c=0.08. The
faster classical kink is able to propagate, while the slower one is
not, since it cannot overcome the PN barrier. Kinks in PNB-free
models are not trapped by the lattice and can therefore propagate.

FIG. 11. Admissible regions for the �4 field for �a� �= +1 and
�b� �=−1 obtained as the continuum limits �h→0� of those pre-
sented in Figs. 2 and 3, respectively. In each panel there is one
inadmissible region marked with “no.”
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C =
�

2
�1 − mA4�, 0 � C �

�

2
; �76�

the 1/cn solution, �q ,r ,s�= �0,−1,0�,

� =
 �

�1 − 2m��1 − c2�
, A =
2�1 − m�

1 − 2m
,

C =
�

2
�1 +

mA4

1 − m
�,

�

2
� C � �; �77�

the sndn/cn solution, �q ,r ,s�= �1,−1,1�,

� =
 �

2�2m − 1��1 − c2�
, A =

1

2m − 1

,

C =
�

2
�1 − A4�, − � � C � 0. �78�

The above six solutions can be rewritten in a great variety
of forms using the properties of the Jacobi elliptic functions
�20�. However, we believe that they may constitute the full
list of physically different solutions to the continuum �4

equation since they fill the whole two-parameter space
�C ,��, obtained as the continuum limit of corresponding
space of the discrete models.

All solutions are conveniently parametrized by a single
parameter −��C�� for �0, and −��C�0 for ��0,
as it is presented in Fig. 11.

The solutions in Eqs. �73�–�75� are bounded while the
other ones are unbounded. The solutions in Eqs. �74� and
�75� are defined for ��0 while the others for �0. The
solutions in Eqs. �74� and �78� are valid for 1 /2�m�1, the
solution in Eq. �77� is valid for 0�m�1/2, while the other
solutions for 0�m�1.

IX. CONCLUSIONS

In the present paper we have shown that the reduction of
the static problem of a discrete Klein-Gordon �and by exten-
sion of the standing wave problem of a discrete NLS� equa-
tion to a two-point problem is a powerful tool for obtaining
all possible static solutions of the corresponding model. We
have applied this general idea to a momentum conserving
�11� and an energy conserving �16� discretization of the �4

model analyzing the full two-parameter plane of solutions
and giving a natural parametrization for it. In particular, we
have examined the admissible regions of the field value at a
given point and of the constant entering the two-point func-
tion pertinent to the model. We have specifically illustrated

how to use different choices of these two parameters to ob-
tain not only the well-known hyperbolic function solutions
and the established elliptic function solutions, but also
different classes of solutions including the inverted �non-
monotonic� kink solutions presented herein and multikink
generalizations thereof. We performed such computations
both for the attractive �focusing� and for the repulsive
�defocusing� types of nonlinearity.

The presented methodology has the significant advantage
over earlier work that by introducing the integration constant
in the discretization of the first integral of the static part of
the PDE, it allows one to construct the full family of the
static solutions of the corresponding model. Earlier work had
implicitly set this additional free parameter to 0; this choice
was sufficient for obtaining the important hyperbolic func-
tion solutions, but the present formalism systematically
illustrates how to generalize the latter.

We have also derived the continuum analogs of the dis-
crete solutions and found that they fill the whole space of
parameters obtained in the limit of h→0 from the parameter
space of the discrete models.

In addition, we have examined some of the key stability
features of the solutions obtained in the various models, il-
lustrating the different stability properties of the models con-
sidered herein �even if their static solutions are identical�. We
have obtained interesting stability properties, including, e.g.,
the counterintuitive stability of the inverted kink and of some
of its periodic generalizations for the EC model.

The present study generates a variety of interesting ques-
tions. For instance, it would be relevant to examine whether
the solutions presented herein �including the inverted ones�
have counterparts in the “standard” discrete �4 model and to
analyze their respective stability. It would also be relevant to
examine how the stability �and existence, since some of them
may not survive the continuum limit� of such solutions de-
pend on the lattice spacing h. Finally, these and related �e.g.,
stability� questions in the context of discrete NLS lattices
�see Refs. �23–25�� would also be equally or even more
�given the multitude of relevant applications of the latter
model� interesting to answer. Such studies are currently in
progress and will be reported elsewhere.
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